Electrical Engineering 229A Lecture 25 Notes

Daniel Raban

November 23, 2021

1 Rate Distortion Theory

1.1 Shannon's rate distortion theorem

In rate distortion theory,, we have an iid \mathscr{X} -valued source X_1, \ldots, X_n . At the compressor, we have

$$f_n: \mathscr{X}^n \to \{1, 2, \dots, 2^{nR}\}$$

Assume $f_n(X^n)$ is perfectly received at the decompressor. The decompressor uses a map $g_n : \{1, \ldots, 2^{nR}\} \to \widehat{\mathscr{X}^n}$, where $\widehat{\mathscr{X}}$ could be different from \mathscr{X} . Call (f_n, g_n) a $(2^{nR}, n)$ **distortion code**. We are also given a cost metric $d : \mathscr{X} \times \widehat{\mathscr{X}} \to \mathbb{R}_+$ called the **distortion measure**.

Definition 1.1. (R, D) is called **achievable** if there exists $((f_n, g_n), n \ge 1)$ of $(2^{nR}, n)$ distortion codes such that

$$\limsup_{n} \frac{1}{n} \mathbb{E}[d(X^n, g_n(f_n(X^n)))] \le D,$$

where $d(x^n, \hat{x}^n)$ denotes $\sum_{i=1}^n d(x_i, \hat{x}_i)$.

Theorem 1.1 (Shannon's rate distortion theorem). Let

$$R^{(I)}(D) = \min_{p(\widehat{x}|x):\sum_{x,\widehat{x}} d(x,\widehat{x})p(x)p(\widehat{x}|x) \le D} I(X;\widehat{X}),$$

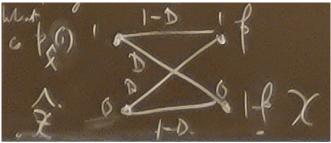
where p(x) is the marginal distribution of the source. (R, D) is achievable if $R > R^{(I)}(D)$ and not achievable if $R < R^{(I)}(D)$.

We write $R^{(I)}(D)$ as R(D), the rate distortion function.

Example 1.1 (Bernoulli source). Let $\mathscr{X} = \{0,1\}$ with p(1) = p and p(0) = 1 - p, reproduction alphabet $\widehat{\mathscr{X}} = \{0,1\}$, and distortion measure d(0,0) = 0 = d(1,1), d(0,1) = 1 = d(1,0). Here,

$$R(D) = \begin{cases} h(p) - h(D)Y & 0 \le D \le \min\{p, 1-p\}\\ 0 & \text{otherwise} \end{cases}$$

To see this, if $D > \min\{p, 1-p\}$ then if p < 1/2, represent all binary sequences of length n by 0^n ; if p > 1/2, represent all binary sequences of length n by 1^n . If $d \le \min\{p, 1-p\}$, we can choose the optimizing $p(\hat{x} \mid x)$ by defining the corresponding $p(x \mid \hat{x})$ via a binary symmetric channel with crossover probability $D(p(\hat{x}))$ has to be chosen correctly to get the correct p(x).



We must have

$$p_{\widehat{X}}(1)(1-D) + (1-p_{\widehat{X}}(1))D = p$$

which gives

$$p_{\widehat{X}}(1) = \frac{p - D}{1 - 2D}.$$

This makes sense because $D \leq \min\{p, 1-p\}$ and $D \leq 1/2$.

If we made this choice, then

$$I(X; \widehat{X}) = H(X) - H(X \mid \widehat{X})$$
$$= h(p) - h(D).$$

To show that this is the best choice, we need to show that $I(X; \hat{X}) \ge h(p) - h(D)$ for all other choices of $p(\hat{x} \mid x)$. This holds because for any other choice of $p(\hat{x} \mid x)$,

$$I(\widehat{X}; X) = H(X) - H(X \mid \widehat{X})$$

= $h(p) - H(X \mid \widehat{X})$
= $h(p) - H(X \oplus \widehat{X} \mid \widehat{X})$
 $\geq h(p) - H(X \oplus \widehat{X})$
 $\geq h(p) - h(D).$

1.2 Proof of the rate distortion theorem

Let's prove the theorem.

Proof. Converse: We want to show that if $R < R^{(I)}(D)$; then (R, D) is not achievable. First, observe that $R^{(I)}(D)$ is a convex function of D (using $I(X; \hat{X})$ is convex in $[p(\hat{x} | x)]$ for fixed $(p(x), x \in \mathscr{X})$). Consider any sequence $((f_n, g_n), n \ge 1)$ of $(2^{nR}, n)$ rate distortion codes. Then

$$nR \ge H(\widehat{X}^n)$$

$$\ge I(X^n; \widehat{X}^n)$$

$$= H(X^n) - H(X^n \mid \widehat{X}^n)$$

Use the chain rule

$$= H(X^{n}) - \sum_{i=1}^{n} H(X_{i} \mid X^{i-1}, \widehat{X}^{n})$$
$$= \sum_{i=1}^{n} H(X_{i}) - \sum_{i=1}^{n} H(X_{i} \mid X^{i-1}, \widehat{X}^{n})$$

Conditioning on more decreases the entropy, so

$$\geq \sum_{i=1}^{n} H(X_i) - \sum_{i=1}^{n} H(X_i \mid \widehat{X}_i)$$
$$= \sum_{i=1}^{n} I(X_i; \widehat{X}_i)$$

If D_i denotes $\mathbb{E}[d(X_i, \widehat{X}_i)]$, then $I(X_i; \widehat{X}_i) \ge R^{(I)}(D_i)$.

$$\geq \sum_{i=1} R^{(I)}(D_i)$$

By convexity of $R^{(I)}$,

$$= nR^{(I)}(D)$$

Achievability: We use a random coding argument. Given $p(x, \hat{x})$, define the set

$$A_{d,\varepsilon}^{(n)} := \left\{ (x^n, \widehat{x}^n) : (x^n, \widehat{x}^n) \in A_{\varepsilon}^{(n)}, \left| \frac{1}{n} \sum_i d(x_i, \widehat{x}_i) - \mathbb{E}[d(X, \widehat{X})] \right| < \varepsilon \right\}.$$

We can show that $\mathbb{P}((X^n, \widehat{X}^n) \in A_{d,\varepsilon}^{(n)}) \to 1$ as $n \to \infty$, where (X_i, \widehat{X}_i) are iid $\sim p(x, \widehat{x})$. We can also show that

$$(1-\varepsilon)2^{nH(X,\widehat{X})}2^{-n\varepsilon} \le |A_{d,\varepsilon}^{(n)}| \le 2^{nH(X,\widehat{X})}2^{n\varepsilon},$$

where the lower bound holds for all sufficiently large n. If $X^n \amalg \widehat{X}^n$, where X^n is iid $\sim p(x)$ and \widehat{X}^n is iid $\sim p(\widehat{x})$, then

$$(1-\varepsilon)2^{-nI(X;\widehat{X})}2^{-n3\varepsilon} \le \mathbb{P}(X^n, \widetilde{\widehat{X}}^n \in A_{d,\varepsilon}^{(n)}) \le 2^{-nI(X;\widehat{X})}2^{n3\varepsilon}$$

So generate 2^{nR} sequences

$$\begin{bmatrix} \hat{X}_1(1) & \cdots & \hat{X}_n(1) \\ \vdots & & \vdots \\ \hat{X}_1(2^{nR}) & \cdots & \hat{X}_n(2^{nR}) \end{bmatrix}$$

with entries iid over the coordinates and $\sim p(\hat{x})$. To construct $f_n : \mathscr{X}^n \to \{1, \ldots, 2^{nR}\}$, on seeing x^n , find a row ℓ such that $(x^n, \widehat{X}^n(\ell)) \in A_{d,\varepsilon}^{(n)}$ if such exists. Then define $g_n : \{1, \ldots, 2^{nR}\} \to \widehat{\mathscr{X}^n}$ by $g_n(\ell)$ is row ℓ .

We claim that if $R > I(X; \hat{X})$, then $\mathbb{P}(\text{row exists for } X^n) \to 1 \text{ as } n \to \infty$. If $R > I(X; \hat{X}) + 3\varepsilon$, then

$$\left(1 - (1 - \varepsilon)2^{-nI(X;\widehat{X})}2^{-3n\varepsilon}\right)^{2^{nR}} \to 0.$$

This completes the proof.

1.3 The rate distortion function with a Gaussian source

For an iid Gaussian source X_1, \ldots, X_n iid $\sim \mathcal{N}(0, \sigma^2), \ \mathscr{X} = \widehat{\mathscr{X}} = \mathbb{R}$, and distortion $d(x, \widehat{x}) = (x - \widehat{x})^2$ with the goal of asymptotical per letter distortion at most D (i.e. $\frac{1}{n} \mathbb{E}[\sum_{i=1}^n (X_i - \widehat{X}_i)^2] \leq D$ with $\widehat{X}^n = g_n(f_n(X^n))$), we have

$$R^{(I)}(D) = \begin{cases} \frac{1}{2} \log \frac{\sigma^2}{D} & \text{if } D < \sigma^2\\ 0 & \text{if } D > \sigma^2 \end{cases}$$

The first case is achieved via $Z \sim \mathcal{N}(0, \sigma^2 - D)$, where $\widehat{X} \amalg Z$. Here, $I(X; \widehat{X}) = h(X) - h(X \mid \widehat{X}) = \frac{1}{2} \log \frac{\sigma^2}{D}$.